Kvaser

Kvaser class

source

Kvaser

 Kvaser (truck:tspace.config.vehicles.TruckInField, can_server:tspace.conf
         ig.messengers.CANMessenger=CANMessenger(server_name='can_udp_svc'
         , host='127.0.0.1', port='8002', protocol='udp'),
         driver:tspace.config.drivers.Driver, resume:bool=False,
         data_dir:Optional[pathlib.Path]=None, flash_count:int=0,
         episode_count:int=0, vcu_calib_table_row_start:int=0,
         torque_table_default:Optional[pandas.core.frame.DataFrame]=None,
         torque_table_live:Optional[pandas.core.frame.DataFrame]=None,
         epi_countdown_time:float=3.0, lock_watchdog:<built-
         infunctionallocate_lock>=<unlocked _thread.lock object at
         0x7f9a997f6f80>, capture_failure_count:int=0,
         flash_failure_count:int=0, logger:Optional[logging.Logger]=None,
         dict_logger:Optional[dict]=None)

*Kvaser is local vehicle interface with Producer(get vehicle status) and Consumer(flasher)

Attributes:

truck: TruckInField
    truck object
can_server: CANMessenger
    can server object*

source

Kvaser.flash_vehicle

 Kvaser.flash_vehicle (torque_table:pandas.core.frame.DataFrame)

flash the torque table to the vehicle via kvaser

Type Details
torque_table DataFrame the torque table to be flashed
Returns None

source

Kvaser.init_internal_pipelines

 Kvaser.init_internal_pipelines ()

initialize the internal pipelines for kvaser


source

Kvaser.produce

 Kvaser.produce (raw_pipeline:tspace.dataflow.pipeline.deque.PipelineDQ[ty
                 ping.Union[dict[str,str],dict[str,dict[str,list[typing.Un
                 ion[str,list[list[str]]]]]]]], hmi_pipeline:Optional[tspa
                 ce.dataflow.pipeline.queue.Pipeline[str]]=None,
                 exit_event:Optional[threading.Event]=None)

produce data from kvaser and put into the pipeline

Type Default Details
raw_pipeline PipelineDQ PipelineDQ[dict[str, str]],
hmi_pipeline Optional None HMI pipeline
exit_event Optional None input event exit

source

Kvaser.filter

 Kvaser.filter (in_pipeline:tspace.dataflow.pipeline.deque.PipelineDQ[typi
                ng.Union[dict[str,str],dict[str,dict[str,list[typing.Union
                [str,list[list[str]]]]]]]], out_pipeline:tspace.dataflow.p
                ipeline.queue.Pipeline[pandas.core.frame.DataFrame],
                start_event:Optional[threading.Event],
                stop_event:Optional[threading.Event],
                interrupt_event:Optional[threading.Event],
                flash_event:Optional[threading.Event],
                exit_event:Optional[threading.Event])

filter data from kvaser input pipeline and put into the output pipeline

Type Details
in_pipeline PipelineDQ input PipelineDQ[dict[str, str]],
out_pipeline Pipeline output Pipeline[pd.DataFrame],
start_event Optional input event start
stop_event Optional input event stop
interrupt_event Optional input event interrupt
flash_event Optional
exit_event Optional input event exit
Returns None